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Abstract

In recent years, the future trend of micro HDD driver IC for large capacity micro HDD is to become lighter, thinner, shorter and
smaller. Among all the options available for micro HDD driver IC’s assembly, warpage is an important issue related to micro HDD
driver IC manufacturability and reliability. The optimal packaging manufacturing process for driver IC for micro HDD is chip scale
package (CSP). However, the production and assemble process for CSP is much more difficult. The aim of this study is to improve
the lower warpage properties for 0.65 mm CSP assembly yield using a model based on a radial basis function network (RBFN), and
the optimal HDD packaging process parameter design is achieved through a genetic algorithm (GA).
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, cellular phones, PDA and other portable
devices have grown rapidly in popularity, thanks to com-
pact, thin, and light features that have become key require-
ments for design. Large storage capacity, as well as an
attractive price, would be the major factors determining
if hard disk drive (HDD) will become increasingly more
popular in growing consumer electronics markets (Cough-
lin et al., 2004). Furthermore, this trend today continues to
accelerate. Generally, the driver IC remains a key compo-
nent of micro HDD in providing the necessary speed and
control capacity that allow a large of amount data to be
read and coded by HDD at multi-megabyte/s rate.

Inevitably, the future trend of micro HDD driver IC for
large capacity micro HDD is to become lighter, thinner,
shorter and smaller. For satisfying the lower profile design
the vertical dimension ‘‘TH’’ (Z-axis) control of driver IC
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is crucial, owing to the limited space in micro HDD (shows
in Fig. 1). Chip scale package (CSP) technology is being
developed to achieve miniaturized packaging systems with
improved space limitations. The advantages to using a CSP
over direct chip attach (DCA) include: easier handling,
more protection for the chip, simpler board assembly and
reduced total package costs (Baliga, 1998). The CSP man-
ufacturing processes of micro HDD driver IC are described
as follows: Wafer back-grinding ) Wafer saw ) Die
attach ) Wire bonding ) Molding ) Marking ) Post
mold cure ) Solder paste printing ) Re-flow ) Singula-
tion ) Packing.

Among all the options available for micro HDD driver
IC’s assembly, warpage is an important issue related to
micro HDD driver IC manufacturability and reliability.
The warpage has been studied widely, from peripheral
packages (e.g., SOP and QFP) to area-array packages
(e.g., BGA and CSP), and from linear elastic studies to vis-
coelastic studies (Egan, Kelly, O’Donovan, & Kennedy,
2003; Li, 2003; Miyake, Yoshida, Baik, & Park, 2001;
Ume, Martin, & Gatro, 1997; Xueren & Tong, 2004; Xie
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Fig. 1. Cross-sectional view of CSP package for micro HDD driver.
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& Yi, 2002). In fact, the micro HDD driver IC package is
more critical than is the case for the normal IC package con-
cerning the reliability issues, as the assembly processes are
much more numerous and the packages much thinner
(Hung, Huang, & Chang, 2006). Upon the whole, for an
ultra-thin CSP assembly, lowering warpage is a very impor-
tant issue (Mertol, 2000), especially since warpage will result
in a serious problem for CSP assembly when the overall
package height is less than 1.0 mm. In recent years, quite a
number of researchers have been conducted based on the
finite element method (FEM), computational fluid dynamics
(CFD) and heat transfer simulations for electronic packages
and in predicting the warpage situation (Driel et al., 2003;
Song, Zhang, Wang, & Diao, 2000). However, the execution
time for these types of analyses can be in the order of hours
or days for the warpage evaluation. Another paper pre-
sented the influence of the properties of materials and struc-
ture on the warpage of CSP packages. Mertol studied the
low stress and low package warpage for the robust design
of overmolded CSP on a flex-tape carrier with 280 solder
balls, for the second level interconnect, with the overall
package height of less than 1.2 mm by the Taguchi method
(Mertol, 2000). The advantage of using the Taguchi method
is in the reduction of both production cost and time. It con-
cerns minimizing the effect of uncertainty or variation in
design parameters (Phadke, 1989). However, most often,
the Taguchi method has been applied to analyzing only lin-
ear systems under the assumption of the addition of individ-
ual factor effects; the goal is to find a design point that is
robust in relation to variation in control or noise variables
(Tong, Su, & Wang, 1997). Complicating matters is the fact
that uncertainty is present in complex engineering systems
such as micro HDD driver IC’s CSP assembly. It has been
a difficult task to accurately predict the micro HDD warpage
situation. This often prevents the application of formal opti-
mization techniques that can require many such evaluations.

Neural networks (NNs) have been used in a large
number of applications and have proven to be effective in
performing complex functions in various fields. NNs can
be structured to perform classification (Raimundo &
Narayanaswamy, 2001), to approximate equations (Joo
et al., 2001), and to predict values (Freeman & Skapura,
1991; Winquist, Hornsten, Sundgren, & Lundstrom,
1993). The widely used algorithms of NN in approximate
model are the back propagation neural networks (BPNNs)
and radial basis function networks (RBFNs). In predictive
modeling, the goal is to map a set of input patterns onto
a set of output patterns. BPNNs have accomplished this
task by learning from a series of data sets related to the sys-
tem and then applying what was learned to approximate or
predict the corresponding output. BPNNs, in conjunction
with a statistical experimental design, have been widely used
to construct semiconductor manufacturing prediction mod-
els (Ho, Xie, Tang, Xu, & Goh, 2001; Liau & Chen, 2005;
Lo & Tsao, 2002). Adaptation or learning is a major focus
of BPNN research that provides a degree of robustness to
the NN model. The most successful BPNN learning model
till now is the least mean square (LMS) algorithm, due to its
high prediction accuracy having been excellently proven.
However, despite the practical success, BPNNs suffered
from increasing convergence. Additionally, building a
BPNNs model is complicated by the presence of many
training factors. Training factors typically involved in
building a BPNNs model may include: the hidden neuron,
training tolerance, initial weight distribution and function
gradient. The most difficulty often arises from the nature
of randomness in the initial weight distribution (Kim,
Kim, & Park, 2005).

The other RBFN is a neural network, approached by
viewing the design as a curve-fitting (approximation) prob-
lem in a high dimensional space. Learning is equivalent to
finding a multidimensional function that provides a best fit
to the training data, with the criterion for ‘‘best fit’’ being
measured in some statistical sense. The RBFN is typically
composed of three factors: the number of pattern units,
the width of a radial basis function and the initial weight
distribution between the pattern and output layers.
Although the RBFN may require more neurons than stan-
dard feed-forward BPNN, they can often design in a frac-
tion of the time that it takes to train standard feed-forward
networks. One of the advantages of RBFN is the fact that
linear weights associated with the output layer can be trea-
ted separately from the hidden layer neurons. This layer
fulfils both the functions of information compression and
pattern recognition. Consequently, the whole network’s
training time is enormously reduced. The aim of this study
is to optimize the lower warpage properties for 0.65 mm
CSP assembly using a model based on a RBFN-GA.

2. Experiment design

Our earlier study (Hung et al., 2006), concerned the
lower warpage (less than 100 lm) issues on the vertical
dimension of driver IC in the specification of 0.65 mm,
based on the Taguchi method. The nine control factors
included in a Taguchi orthogonal array L27(313) experi-
ments are: die thickness, die size, die attach thickness, mold
thickness, mold compound, substrate thickness, cure tem-
perature, cure time and package size for the driver IC for
micro HDD. In particular, to satisfy the lead-free materials
requirement, based on the different CTE a2 quality charac-
teristics, different materials of mold compound were
selected to observe the warpage change of the driver IC
(shows as Table 1). Three mold compound (CTE a2) experi-
mental levels are displayed in Table 2. The signal-to-noise



Table 1
Control factors and their levels

Control factors Variables Levels

1 2 3

Die thickness (mm) A 75 lm 100 lm 125 lm
Die size (mm) B 6 · 6 mm 9 · 9 mm 12 · 12 mm
Die attach thickness

(mm)
C 20 lm 30 lm 40 lm

Mold thickness
(mm)

D 300 lm 350 lm 400 lm

Mold compound E M1/25 M2/30 M3/35
Substrate thickness

(mm)
F 110 lm 130 lm 150 lm

Cure temperature
(�C)

G 170 175 180

Cure time (h) H 2h 4h 6h
Package size (mm) I 10 · 10 mm 12 · 12 mm 14 · 14 mm

Table 2
Mold compound material properties

M1 M2 M3

CTE a1 (ppm/C) 8 8 8
CTE a2 (ppm/C) 25 30 35
Tg (C) 140 140 140
Filler content (wt%) 89 89 89

Young’s modulus

25.5 25.5 25.5 25.5

Specific gravity 2.01 2.01 2.01
Curing temperature (C) 175 ± 5 175 ± 5 175 ± 5
Curing time (h) 2 � 6 2 � 6 2 � 6
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(S/N) ratio (g) is an index of robustness in experimental
processing, and the definition of S/N ratio for the smal-
ler-the-better (STB) response by Phadke (1989) is as
follows:

g ¼ SNSTB ¼ �10log10ðMSDÞ ð1Þ
where MSD ¼

Pn
1y2

i

� �
=n, yi is the ith observation and n is

the number of observations in each combination.
Fig. 2. The Tg curve between C
The Taguchi experiment results combined (e.g., produc-
tion processes parameters): the die thickness is thick, the
die size is 6 mm · 6 mm, the die attach thickness is
30 lm, the mold thickness is 350 lm, the mold compound
is level ‘M1’, the substrate thickness is 130 lm, the cure
temperature is 170 �C, the cure time is 6 h, and the package
size is 10 mm · 10 mm, respectively. However, according to
Taguchi experiment parameters, the average value of the
production quality level of warpage is �x ¼ 85 lm, and the
standard deviation is s = 10.12. Although Taguchi experi-
ment could improve production quality effectively, the cur-
rent production level is close to the upper limit of quality
standard, thus, unable to reach the optimal design for pro-
duction parameters.

Since large variability of CTE characteristic (shown as
Fig. 2) exists among different mold thickness and mold com-
pound type or substrate thickness and mold thickness for the
different CTE a2 quality characteristics, the selection of a
proper combination of the above four materials is essential
for controlling the warpage level. However, the 0.65 mm dri-
ver IC’s CSP packaging design problem that accurately han-
dles uncertainty for these highly complex systems, further
adds to the computational burden because each evaluation
of the objective function for these systems can require sam-
pling multiple points in the design space. Therefore, a well-
trained RBFN was constructed to simulate and predict the
output response for various control factor-level setting.
The RBFN was trained using 27 data points generated by
a three level Taguchi method. Each point represented a com-
plete experiment combination of parameters.
3. Driver IC RBFN modeling

3.1. RBF network

RBFNs are composed of simple elements operating in
parallel. These elements are inspired by biological nervous
TE halphai 1 and halphai2.
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systems. As in nature, the network function is determined
largely by the connections between elements (neurons).
Commonly RBFNs are adjusted, or trained, so that a par-
ticular input leads to a specific target output. Moody and
Darken (1989) define a learning rule as a procedure for
modifying the values of the connections (weights and
biases) between neurons for a RBFN. The design of a
RBFN in its most basic form consists of three separate lay-
ers: input layer, hidden layer and output layer. The hidden
layer contains a number of RBF neurons, and each of them
represents a single radial basis function. The output layer
provides the response of the network to the activation pat-
terns applied to the input layer. The architecture of the
RBFN is shown in Fig. 3.

The RBFN has been defined, and the equation of the
conventional RBFN form given, by Moody and Darken
(1989):

f ðxÞ ¼
Xn

i¼1

wi/iðxÞ þ b; x ¼ ½x1; x2; . . . ; xp�T ;

w ¼ ½w1;w2; . . . ;wn�T ð2Þ

where / is a nonlinear activation function, x is the input
vector and xj is the jth input pattern, wi is the weights of
the ith activation function and b is the basis of the output
layer neuron. The Gaussian function is chosen as the acti-
vation function by a center (l) and a width (r2). Therefore,
the nonlinear transformation function of the ith class of
RBF is given as follows:

/iðxÞ ¼ e
�kx�lik2

2r2
i ð3Þ

where e is the exponential function, li is the ith RBF center
determined by the Clustering algorithm, and ri is the
widths of the ith RBF input patterns. Hence, the output
function of the RBFN is also the linear combination of
Gaussian functions. The output layer transfer function is
linear, and given as follows:

fjðxÞ ¼
Xn

i¼1

wji/iðxÞ þ bj ¼
Xn

i¼1

wjie
�kx�lik2

2r2
i þ bj ð4Þ
Fig. 3. The architecture of the radial basis function network.
where fj(x) is the output of the jth output layer neuron, wji

is the weight of connection between ith hidden layer neuron
and the ith output layer neuron, /i is the output of the ith
hidden layer neuron, and bj is the basis of the jth output
layer neuron.

In the learning phase, there are two separate stages: unsu-
pervised learning and supervised learning. The difference
between supervised and unsupervised training is that, exter-
nal prototypes are used as target outputs for specific input
patterns, and the network is given a learning algorithm to
follow and calculate new connection weights that bring the
output closer to the target output. In the first stage, unsuper-
vised learning, it is a process where a set of weights is defined
that produces a desired response as a reaction to certain
input patterns (Moody & Darken, 1989). The weights and
biases are modified only in response to network inputs.
There are no target outputs available. Most of these algo-
rithms perform clustering operations. They categorize the
input patterns into a finite number of classes. A very simple
and effective clustering method is the K-means clustering
method that works by starting out from a set of K initial cen-
ter points and uses an iterative algorithm that minimizes the
sums of distances from each object to its cluster centroid,
over all clusters. This algorithm moves objects between clus-
ters until the sum cannot be decreased any further. We
denote the jth input pattern by xj which has an associated
target value tj. The algorithm proceeds as follows:

(a) Randomly assign each pattern vector xj to one of k

subsets.
(b) Compute the mean vector of each subset.
(c) Reassign each point to subset with the closest mean
vector.
(d) Continue until no further reassignments, and loop
back to (b).

The final (equilibrium) locations of the centers lk are
then used as center points for the hidden nodes in the
RBFN. As the second training stage, the LMS algorithm
is employed to perform the supervised training, to ensure
the accuracy of the network. It is much more efficient than
either the conjugate gradient algorithm or the variable
learning rate algorithm. Therefore it is frequently used in
implementations for the RBFN’s training stage. Finally,
the HDD RBFN model performance was measured by
the typical root mean-squared error (RMSE) expressed as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm
j¼1

ðtj � fjðxÞÞ2

m

vuuut
ð5Þ

where m denotes the number of testing patterns.
3.2. HDD RBFN molding

The orthogonal array used in the study is L27(39) with
four repetitions for each combination. There are a total
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of 108 observations in our study. Based on the results of
the Taguchi experiment, the data set contained nine input
variables (control factors) and one target variable (g).
Whatever, there are two kinds of input variable in the data
set: seven continuous variables (factor A, C, D, E, F, G and
H) and two nominal variables (factor B and I). Generally,
the Driver IC RBFN training can be made more efficient if
certain pre-processing steps are performed on the network
input variables and targets. Before training, it is often use-
ful to scale the input variables and targets so that they
always fall within a specified range. In this study, the data
set was pre-processed with a transformation encoding,
one binary coding scheme was applied to the nominal vari-
ables and the other continuous variables were rescaled in
range [0,1·]. For example, the ‘‘die size’’ (factor B) and
the ‘‘package size’’ (factor I) variables were encoded as: a
binary code ‘‘level 1’’ ! (0, 0,0), ‘‘level 2’’ ! (0, +1,0)
and ‘‘level 3’’ ! (+1,+1,+1) in Table 1. Regarding the
output, the target (g) was rescaled in range [0,1]. These
features are listed in Table 3. Next, the training data were
randomly selected from the data set, and set as the output
of Driver IC RBFN to construct the nonlinear network
models. In this study, 80% input patterns (21 observations)
are used for training and the remaining 20% observations
(six observations) are used for testing. The Driver IC
RBFN simulation was performed using MATLAB�

software.
Table 3
A summary of the pre-processed data set based on the Taguchi experiment’s

No. Factors

A B C D E F

1 0.6 0 0 0 0.50 0.75 0.71 0.7
2 0.6 0 1 0 0.50 0.75 0.86 0.8
3 0.6 1 1 1 0.50 0.75 1.00 1.0
4 0.6 0 1 0 0.75 0.88 0.71 0.7
5 0.6 1 1 1 0.75 0.88 0.86 0.8
6 0.6 0 0 0 0.75 0.88 1.00 1.0
7 0.6 1 1 1 1.00 1.00 0.71 0.7
8 0.6 0 0 0 1.00 1.00 0.86 0.8
9 0.6 0 1 0 1.00 1.00 1.00 1.0

10 0.8 0 1 0 0.75 1.00 0.71 0.8
11 0.8 1 1 1 0.75 1.00 0.86 1.0
12 0.8 0 0 0 0.75 1.00 1.00 0.7
13 0.8 1 1 1 1.00 0.75 0.71 0.8
14 0.8 0 0 0 1.00 0.75 0.86 1.0
15 0.8 0 1 0 1.00 0.75 1.00 0.7
16 0.8 0 0 0 0.50 0.88 0.71 0.8
17 0.8 0 1 0 0.50 0.88 0.86 1.0
18 0.8 1 1 1 0.50 0.88 1.00 0.7
19 1 1 1 1 1.00 0.88 0.71 1.0
20 1 0 0 0 1.00 0.88 0.86 0.7
21 1 0 1 0 1.00 0.88 1.00 0.8
22 1 0 0 0 0.50 1.00 0.71 1.0
23 1 0 1 0 0.50 1.00 0.86 0.7
24 1 1 1 1 0.50 1.00 1.00 0.8
25 1 0 1 0 0.75 0.75 0.71 1.0
26 1 1 1 1 0.75 0.75 0.86 0.7
27 1 0 0 0 0.75 0.75 1.00 0.8
4. Results and discussion

Too great a number of neurons cause over-training to
influence the accuracy of the Driver IC RBFN model until
the number of neurons has been optimized. In order to
optimize the number of neurons for Driver IC RBFN,
the SSE for the Driver IC RBFN models’ predictions of
the training set, and the RMSE for the Driver IC RBFN
models’ predictions of the testing set, were assessed for
ascertaining the different number of neurons. An over-
training was caused in testing set when neurons number
more than 20 (shown as Fig. 5). Therefore, Fig. 4 and
Fig. 5 show that 20 neurons should be extracted for the
Driver IC RBFN model. Besides, the width increased incre-
mentally from 1.0 to 10.0 with an increment of 0.5. The
resulting RMSE variations are shown in Fig. 6. As shown
in Fig. 7, the SSE for the prediction of the Driver IC
RBFN is the least and the testing RMSE is 0.0034 when
the width is 7.5 and the number of neurons is 20.
4.1. Optimal HDD drive IC packaging process parameters

Through the use of the Driver IC RBFN model, the pre-
diction model between HDD drive IC packaging process
parameters and warpage was generated. Moreover, the
optimal HDD drive IC packaging process parameter
Response

G H I S/N (dB) Normalized

3 0.94 0.33 0 0 0 �39.6031 0.218606
7 0.97 0.67 0 0 0 �40.0154 0.185057
0 1.00 1.00 0 0 0 �42.2508 0.003165
3 0.94 0.67 0 1 0 �38.9822 0.269128
7 0.97 1.00 0 1 0 �38.8970 0.27606
0 1.00 0.33 0 1 0 �39.6946 0.211161
3 0.94 1.00 1 1 1 �40.4239 0.151818
7 0.97 0.33 1 1 1 �40.9959 0.105275
0 1.00 0.67 1 1 1 �42.2897 0
7 1.00 0.33 0 0 0 �40.3799 0.155398
0 0.94 0.67 0 0 0 �41.2926 0.081133
3 0.97 1.00 0 0 0 �40.1646 0.172917
7 1.00 0.67 0 1 0 �40.1477 0.174292
0 0.94 1.00 0 1 0 �40.6657 0.132143
3 0.97 0.33 0 1 0 �41.1828 0.090067
7 1.00 1.00 1 1 1 �38.3892 0.31738
0 0.94 0.33 1 1 1 �40.6728 0.131565
3 0.97 0.67 1 1 1 �41.1682 0.091255
0 0.97 0.33 0 0 0 �38.5958 0.300569
3 1.00 0.67 0 0 0 �38.0205 0.34738
7 0.94 1.00 0 0 0 �39.1645 0.254294
0 0.97 0.67 0 1 0 �40.1116 0.17723
3 1.00 1.00 0 1 0 �40.1037 0.177873
7 0.94 0.33 0 1 0 �40.9754 0.106943
0 0.97 1.00 1 1 1 �40.6653 0.132176
3 1.00 0.33 1 1 1 �40.0880 0.17915
7 0.94 0.67 1 1 1 �39.3314 0.240714



Fig. 4. Training errors for selected number neurons of RBFN mode.

Fig. 5. Testing errors for selected number neurons of RBFN model.

Fig. 6. RMSE errors for selected width.

Fig. 7. Training SSE for RBFN model.
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designs were obtained by genetic algorithm (GA) imple-
mentation in this section. GA is widely used to search for
optimized parameters satisfying given constraints (Gold-
berg, 1989). The advantage of the GA approach lies in
the ease with which it can handle arbitrary kinds of con-
straints and objectives. When solving multi-objective prob-
lems, GA provides many satisfactory solutions in terms of
the objectives, and then allows the decision maker to select
the best alternative. Therefore GA is most useful for prob-
lems involving multimodal design spaces.

The GA is a method for solving both constrained and
unconstrained optimization problems, and one that is
based on natural selection, the process that drives biologi-
cal evolution. The GA repeatedly modifies a population of
individual solutions. At each step, the GA selects individu-
als at random from the current population to be parents
and uses them to produce the children for the next genera-
tion. In GA optimization, the factors involved are: the size
of the initial population, the crossover probability, the
mutation probability, and a fitness function. A fitness
function is used to evaluate individuals, since reproductive
success varies with fitness. The optimal HDD packaging
process parameter design, achieved through the procedures
of executing GA is simplified as follows.

Step 1: All of the HDD drive IC packaging process
parameters will vary within a known range and encoded
as a binary string (chromosome). We use 10-bit encod-
ing which results in a 130-bit chromosome for each
parameter.
Step 2: Set the GA’s operating conditions: the genera-
tion size was set to 1500, the size of the initial population
was set to 100, the crossover and mutation probabilities
were set to 0.8 and 0.01, respectively.
Step 3: To create a random initial population.
Step 4: Scoring each member of the current population
by computing the individual’s fitness value. The fitness
function can be evaluated as RMSE calculated in the
checking sample or otherwise according to the specificity



Table 4
Comparison of the Taguchi result, RBFN-GA optimized, and adjustment result

Method Factors’ level Prediction S/N
(dB)A B C D E F G H I

Orthogonal array
20th run

125 0 0 0 40 350 30 110 180 4 0 0 0 �38.0205

Taguchi’s result 125 0 0 0 30 350 25 130 170 6 0 0 0 �36.956

RBFN-GA’s result 114.88 �0.072 0.189 �0.099 35.61 327.71 27.10 123.76 176.3 3.999 �0.0408 0.2691 0.0847 �35.512

Adjustment-GA
result

115 0 0 0 35 330 27.0 120 176 4 0 0 0 �35.882
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of the task. The GA algorithm meeting a given fitness
function is expressed as

Fitness ¼ 10000� �1

SNprediction

ð6Þ

Step 5: Selection of members: the members of the new
population are selected based on their fitness. Elite
children are the individuals in the current generation
with lower fitness values. Roulette wheel selection is
employed in this algorithm. These individuals automat-
ically survive to the next generation.
Step 6: Production of children from their parents.
Dependent on the crossover rate, crossover of the bits
from each chosen chromosome occurs at a random posi-
tion, where there is an interchange between the two
parts. Proceed through the chosen chromosome bits
and flip them in dependence to the mutation rate.
Step 7: Replace the current population with the chil-
dren, to form the next generation.
Step 8: Steps 4, 5, 6 and 7 are repeated until a stopping
criteria is met.

The comparisons on parameter settings among the
Taguchi method, and RBFN-GA are listed in Table 5.
Although the parameter of RBFN-GA could elevate the
production standard to �35.512 dB, it is still limited to
the specifications (such as package size) and parameters
(such as die size, die attach thickness, and cure temperature)
of the molds setting in practice. We use the parameters from
RBFN-GA to adjust parameters of adjustment-GA in
Table 4, and predict the output result of �35.882 dB by
using the RBFN model. The results are sent to a semicon-
ductor manufacturer for three tests, each drawing 30 sam-
ples. The production standard Cpk of the tests is shown in
Table 5. The final parameter setting from adjustment-GA
Table 5
Adjustment-GA experiments’ result

Batch Max Min �x s Cpk

1 (mil) 2.57 1.24 2.00 0.3617 1.8451
(lm) 65 31 51 9.19 1.79

2 (mil) 2.48 1.40 2.02 0.3113 2.1229
(lm) 63 36 51 7.91 2.06

3 (mil) 2.28 1.18 1.77 0.2992 2.4857
(lm) 58 30 45 7.6 2.42
result is 115 lm, 6 mm · 6 mm, 35 lm, 330 lm, 27.0
(ppm/C), 120 lm, and 176 (�C), 4 h, and 10 mm · 10 mm
for die thickness, die size, die attach thickness, mold thick-
ness, mold compound, substrate thickness, cure tempera-
ture, cure time, and package size, respectively. According
to the experimental results, the production parameters
derived from RBFN-GA have excellent control over pro-
duction variation, and the overall production competency
index Cpk reaches over 1.80. This proves that this study
could effectively improve the production competency
and the competitive advantages of semiconductor manu-
facturers.

5. Conclusion

The warpage is an important issue related to micro
HDD Driver IC manufacturability and reliability, espe-
cially, when the size of Driver IC for micro HDD becomes
smaller and thinner. This study combines RBFN with
Taguchi method to structure a well-trained prediction
model and further to search for the optimal HDD drive
IC packaging process parameter design through GA.
According to the experimental results, the production
parameters derived from RBFN-GA have excellent control
over production variation, and the overall production
competency index Cpk reaches over 1.80. This proves that
this study could effectively improve the production compe-
tency and the competitive advantages of semiconductor
manufacturers.
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